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Radial fluctuations and nonisotropic disclinations in nematic liquid crystals
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The aim of this paper is to study the role of the radial symmetry in the profile of anisotropic disclinations of
the nematic liquid crystals. It will be shown that when radial fluctuations are allowed a macroscopic term
appears. This term preserves the known topology of these disclinations but changes their angular structure and
the distribution of elastic energy. Furthermore, it is shown that one of the isotropiclike disclinations predicted
by the usual approach is forbidden by the radial fluctuations.

PACS numbg(s): 61.30.Gd, 61.30.Jf, 64.70.Md

[. INTRODUCTION limit to be imposed on the Euler-Lagrange equation. The
advantage of this procedure, is that the radial fluctuations are
not eliminated from the beginning, allowing the study of
their effects during the calculations. When this procedure is
applied to the limit of vanishing small radial fluctuations, we
discover that the equation describing the director configura-
. tion preserves the topological properties of the @&g. but it
where ¢ is the angle of the director with the direction,x  is considerably different from the one proposed by Dzy-
is the polar angle(See Fig. 1, and S=n/2, n==1,  gloshinskii. In the next two sections the equation for the
*2,..., is thestrength of the disclination. The validity of configuration of the director will be deduced and the differ-
Eqg. (1) [5] depends upon two basic assumptions: the directopnces between our approach and the usual one will be em-

lies on a plane perpendicular to the disclination line and thgynasjzed. At the conclusion some comments about our ap-
elastic constants are assumed as the s@so¢ropic condi- proach will be presented.

tion). Both assumptions have been subject of intense study
and it was found that they are idealizations of the real ex-
perimental situatiof5—10]. The planar disclinations are not
usually found in nematic materials because, in order to avoid
a singularity, the director always escapes into the third di- ) ] ) ]
mension[5,6]. Furthermore, it was found that when the elas-  Consider the two-dimensional elastic free energy pro-
tic constants are not considered the same, the solution givé¥Psed by Dzyaloshinsk{i7] to study polar disclinations

by Eg. (1) becomes an approximation of a more complex
solution[7]. An important aspect of the approximation given

by Eqg.(1) is that it has the same topological properties of the 1 S -
anisgtropic solution. The anisotrop[))y of the glagtic constants” ~ E(K33+ Kll)f {(1+a)(VXn)*+(1-a)(V-n)3dV,
stretches and shrinks the solution given by Eg, but does (2
not change its general character: when we turn round a

closed path, the director always returns to the same initial

orientation. In fact, this compactness condition is the essencghere a= (K 33— K1;)/(K33+K;;) measures the elastic an-
of the topological properties of the polar disclinations. isotropy, K is the splay elastic constant ads is the bend

The basic equations describing the anisotropic version of|astic constant. Using the polar geometry described in Fig. 1
the Eq.(1) were proposed by Dzyaloshinskif]. In his study  5ne can show that

he realized that the polar disclinations have radial symmetry
and imposed it by removing a radial derivative from the
Frank free energy, getting an elastic energy that only deals
with of the angular dependence of the problem. Furthermore,
the compactness of the solution was used as a boundary con-
dition of the differential equation determining the polar con-
figuration. Since then, this solution has been considered as
the anisotropic version of the E(l).

In this paper we will regard a slight different approach to
the same problem. We will not force the radial symmetry
directly on the Frank free energy, but we will consider it as a

According to Frank{1-4], planar polar disclinations of
nematic materials would be described by the profile

¢=Sx+¢o, )

II. ANISOTROPIC POLAR DISCLINATIONS

>
S

*Permanent address: Departamento d&icg) Universidade Es- FIG. 1. Geometry and variables used in the analytical definition
tadual de MaringaCampus Universitio, Maringa ParanaBrazil.  of the disclinations.
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V-n=4;n+ F(aXnX+ n,)

1
=-n,d 4+ Fnr(&xw+1), 3

. 1
(VXn)g=d,ny,+ F(—&Xn,+n¢)

1
:nrﬁr'p_"Fn:,//(o’)X‘;b_" 1), (4)

wheren, = cosy, ny=siny, ¥(x)=¢(x)—x, and the index
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S means that the corresponding operator is restricted to act-
ing on the surface of the planar configuration.
So,

1
FZE(K33+K11)f FdV (5)

with

1
F=(1+acos2))(d, )%+ —(1—acos2y)(d,p+ 1)2
r

2a
+ sin 20(a,0+ 1) (3,0, ©)

h)

FIG. 2. Profile of the functionp(x) and the density of energly for the disclinationsS=—1/2 andS=1/2 and anisotropie& ;;
=2K; (a=0.33) andK;3=4K;; (a=0.66) at a fixed distance from the origin. The variable> gives the angular orientation of the
director and the variablg gives the angular position, as described in Fig. 1. The continuous line corresponds to the results that follow from
Eqg. (9) and the dashed lines correspond to the results that follow from Dzyaloshinskii solution. Arbitrary unities were used for the density
of energy.(a@ and(c) correspond to the profile of the disclinati®+ — 1/2, and(b) and(d) correspond to the angular distributions of free
energy,F. Observe that the two approaches have a strong difference in the angular distribution of free (@hdy(f), and(h) describe,
for S=1/2, the same physics as the preceding four figures.
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Ill. COMPARISON BETWEEN THE SOLUTIONS

Our first remark concerns the trivial solutions that, like
=0, satisfy the differential equations given by E(.and
(9). As Dzyaloshinskii, we have found that=0 (S=1)
andd,y+1=0 (S=0) are equivalent to the isotropic solu-
tions described by Eql). Due to that we will call these
solutions as isotropiclike solutions. But, while the Dzy-
aloshinskii equation predicts thatyy—1=0 (S=2) would
be an isotropic-like solution, our approach does not predict
that. In fact, our approach predicts thgtiy—2=0 (S=3)
would be an isotropiclike solution.

Of course, the majority of the solutions of these differen-
tial equations are not isotropiclike solutions. We will call the
anisotropic solutiony, corresponding to the disclinatio®
and anisotropw, aSzp:()(). Hence,¢:(X) satisfies the same

boundary conditions of the similar isotropic disclination. For

example, for S=1/2 we have 1/132(0)=0 and ¢2 (2m)

FIG. 3. Total free energy computed along a line at a fixed dis-_ _ . In Figs. 2a) to 2(h) graphic representatiolr/12$ of the

tancc_er from the origin. The solid symbols correspond to the resultsnumeriC solutions of some functions related witd, for
obtained from our model, and the open symbols correspond to the ] e S
results obtained with the Dzyaloshinskii solution. Observe that thdixed T, are displayed. Two distinct values of the anisotrapy
anisotropya= (Kss— K17)/(Kas+ K15) of the elastic constants pro- and_two distinct values disclination indeX are exhibited
duces different values for free energy of the disclinatigs (#°>0, ¢°%, 9%, and ¢2%9. The anisotropya=0.33
=—1/2 andS=1/2[10]. Arbitrary unities were used for the density corresponds td 33= 2K 1,, and the anisotropgp=0.66 cor-
of energy. responds td 33=4K ;.
Figure 2 also compares the distribution of the free energy,

At this point Dzyaloshinskii introduced the radial symme- for fixed r, between our approach and the one by Dzy-
try of the disclinations and, on this equation, imposed thealoshinskii. The distribution of energy is strongly different
conditiond,y=0. So, the first and last terms are zero. Fur-petween these two configurations; in our approach the
thermore, as the variablg depends no more on but de-  maxima and the minima are more accentuated. Nevertheless,
pends only ony, the term linear ind, i, that comes from the corresponding difference in total energy is not dramatic.

(9 g+ 1)?, becomes a total differential and may be sub-In the Fig. 3 the configuration$i‘l/2 and 1//?/2 show this dif-

tracted fro_m the free energy. So, the Dzyaloshinskii free €Nference, as function of the anisotropy The free energy,
ergy density becomes according our configurations, is always around 5% greater
than the configuration previously known.

(@)

1
_ _ 2
fD_rz(l acos 2)) (9, "+1), IV. FINAL REMARKS AND CONCLUSION

. ) i ) o In this paper we have shown that the shape of the radial

which gives the following equation for the polar disclination: yiscjinations depends on the manner by which we deal with
the radial symmetry of these structures. The conditipy
tS) =0 is a constrainta nonholonomic ongeand as a constraint

it must be handled. So, when it is imposed directly on the

When the termv, ¢ is disregarded in Eq(6), all radial  free energy a strong limitation in the nature of the admissible
contributions become fixed and their consequences cannot enfigurations is being done and, surely, the character of the
computed. Here, another approach will be considered. Firgiroblem under consideration is also being changed. A con-
we will deduce the differential equation giving the director straint can never be imposed directly on the functional. As a
configuration and, only then, we will regard the radial sym-rule [11], it must be imposed on the configuration giving the
metry, by imposing the limit, #— 0. When this is done itis extreme of a functional.
observed that the first term of E@5) becomes null, as hap- Finally, it must be observed that an absolutely perfect
pened in the Dzyaloshinskii approach. However, the contriradial configuration would require a so restrictive set of ex-
bution coming from 2/r sin 2/(d, 4+ 1)(d,¢) does not have perimental conditions, that in practice, the radial symmetry
the same destination, and does not disappear when the limiiould be only an approximation. Therefore, as happens to
drpy—0 is taken. In this case, the resulting equation for theany approximation, it must be maintained until the last equa-
disclinations becomes tions, where its influence may be computed.

(1—acos 2)(F ) +a[ ()~ 1]sin 24p=0.

(1—acos 2)(F5¢) +a (9,4)?—1]sin 2
—a(d,+1)sin2¢=0,
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