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Radial fluctuations and nonisotropic disclinations in nematic liquid crystals

M. Simões, A. J. Palangana,* and A. E. Gonc¸alves
Departamento de Fı´sica, Universidade Estadual de Londrina, Campus Universita´rio, 86051-970, Londrina, PR, Brazil

~Received 20 May 1999; revised manuscript received 13 September 1999!

The aim of this paper is to study the role of the radial symmetry in the profile of anisotropic disclinations of
the nematic liquid crystals. It will be shown that when radial fluctuations are allowed a macroscopic term
appears. This term preserves the known topology of these disclinations but changes their angular structure and
the distribution of elastic energy. Furthermore, it is shown that one of the isotropiclike disclinations predicted
by the usual approach is forbidden by the radial fluctuations.

PACS number~s!: 61.30.Gd, 61.30.Jf, 64.70.Md
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I. INTRODUCTION

According to Frank@1–4#, planar polar disclinations o
nematic materials would be described by the profile

w5Sx1w0 , ~1!

wherew is the angle of the director with theeW x direction,x
is the polar angle~See Fig. 1!, and S5n/2, n561,
62, . . . , is thestrength of the disclination. The validity o
Eq. ~1! @5# depends upon two basic assumptions: the dire
lies on a plane perpendicular to the disclination line and
elastic constants are assumed as the same~isotropic condi-
tion!. Both assumptions have been subject of intense st
and it was found that they are idealizations of the real
perimental situation@5–10#. The planar disclinations are no
usually found in nematic materials because, in order to av
a singularity, the director always escapes into the third
mension@5,6#. Furthermore, it was found that when the ela
tic constants are not considered the same, the solution g
by Eq. ~1! becomes an approximation of a more comp
solution@7#. An important aspect of the approximation give
by Eq.~1! is that it has the same topological properties of
anisotropic solution. The anisotropy of the elastic consta
stretches and shrinks the solution given by Eq.~1!, but does
not change its general character: when we turn roun
closed path, the director always returns to the same in
orientation. In fact, this compactness condition is the esse
of the topological properties of the polar disclinations.

The basic equations describing the anisotropic version
the Eq.~1! were proposed by Dzyaloshinskii@7#. In his study
he realized that the polar disclinations have radial symm
and imposed it by removing a radial derivative from t
Frank free energy, getting an elastic energy that only de
with of the angular dependence of the problem. Furtherm
the compactness of the solution was used as a boundary
dition of the differential equation determining the polar co
figuration. Since then, this solution has been considere
the anisotropic version of the Eq.~1!.

In this paper we will regard a slight different approach
the same problem. We will not force the radial symme
directly on the Frank free energy, but we will consider it a
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limit to be imposed on the Euler-Lagrange equation. T
advantage of this procedure, is that the radial fluctuations
not eliminated from the beginning, allowing the study
their effects during the calculations. When this procedure
applied to the limit of vanishing small radial fluctuations, w
discover that the equation describing the director configu
tion preserves the topological properties of the Eq.~1!, but it
is considerably different from the one proposed by Dz
aloshinskii. In the next two sections the equation for t
configuration of the director will be deduced and the diffe
ences between our approach and the usual one will be
phasized. At the conclusion some comments about our
proach will be presented.

II. ANISOTROPIC POLAR DISCLINATIONS

Consider the two-dimensional elastic free energy p
posed by Dzyaloshinskii@7# to study polar disclinations

F5
1

2
~K331K11!E $~11a!~¹W 3nW !21~12a!~¹W •nW !2%dV,

~2!

where a5(K332K11)/(K331K11) measures the elastic an
isotropy,K11 is the splay elastic constant andK33 is the bend
elastic constant. Using the polar geometry described in Fi
one can show that

FIG. 1. Geometry and variables used in the analytical definit
of the disclinations.
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¹W •nW 5] rnr1
1

r
~]xnx1nr !

52nx] rc1
1

r
nr~]xc11!, ~3!

~¹W 3nW !S5] rnc1
1

r
~2]xnr1nc!

5nr] rc1
1

r
nc~]xc11!, ~4!

wherenr5cosc, nc5sinc, c(x)5w(x)2x, and the index
S means that the corresponding operator is restricted to
ing on the surface of the planar configuration.

So,

F5
1

2
~K331K11!E FdV ~5!

with

F5~11a cos 2c!~] rc!21
1

r 2
~12a cos 2c!~]xc11!2

1
2a

r
sin 2c~]xc11!~] rc!, ~6!
e
w from
density
e

FIG. 2. Profile of the functionw(x) and the density of energyF for the disclinationsS521/2 andS51/2 and anisotropiesK33

52K11 (a50.33) andK3354K11 (a50.66) at a fixed distancer from the origin. The variablew gives the angular orientation of th
director and the variablex gives the angular position, as described in Fig. 1. The continuous line corresponds to the results that follo
Eq. ~9! and the dashed lines correspond to the results that follow from Dzyaloshinskii solution. Arbitrary unities were used for the
of energy.~a! and~c! correspond to the profile of the disclinationS521/2, and~b! and~d! correspond to the angular distributions of fre
energy,F. Observe that the two approaches have a strong difference in the angular distribution of free energy.~e!, ~g!, ~f!, and~h! describe,
for S51/2, the same physics as the preceding four figures.
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At this point Dzyaloshinskii introduced the radial symm
try of the disclinations and, on this equation, imposed
condition] rc50. So, the first and last terms are zero. F
thermore, as the variablec depends no more onr, but de-
pends only onx, the term linear in]xc, that comes from
(]xc11)2, becomes a total differential and may be su
tracted from the free energy. So, the Dzyaloshinskii free
ergy density becomes

FD5
1

r 2
~12a cos 2c!„~]xc!211…, ~7!

which gives the following equation for the polar disclinatio

~12a cos 2c!~]x
2c!1a@~]xc!221#sin 2c50. ~8!

When the term] rc is disregarded in Eq.~6!, all radial
contributions become fixed and their consequences cann
computed. Here, another approach will be considered. F
we will deduce the differential equation giving the direct
configuration and, only then, we will regard the radial sy
metry, by imposing the limit] rc→0. When this is done it is
observed that the first term of Eq.~6! becomes null, as hap
pened in the Dzyaloshinskii approach. However, the con
bution coming from 2a/r sin 2c(]xc11)(]rc) does not have
the same destination, and does not disappear when the
] rc→0 is taken. In this case, the resulting equation for
disclinations becomes

~12a cos 2c!~]x
2c!1a@~]xc!221#sin 2c

2a~]xc11!sin 2c50, ~9!

that differs from the Dzyaloshinskii equation in the last ter

FIG. 3. Total free energy computed along a line at a fixed d
tancer from the origin. The solid symbols correspond to the resu
obtained from our model, and the open symbols correspond to
results obtained with the Dzyaloshinskii solution. Observe that
anisotropya5(K332K11)/(K331K11) of the elastic constants pro
duces different values for free energy of the disclinationsS
521/2 andS51/2 @10#. Arbitrary unities were used for the densit
of energy.
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III. COMPARISON BETWEEN THE SOLUTIONS

Our first remark concerns the trivial solutions that, lik
c50, satisfy the differential equations given by Eqs.~8! and
~9!. As Dzyaloshinskii, we have found thatc50 (S51)
and]xc1150 (S50) are equivalent to the isotropic solu
tions described by Eq.~1!. Due to that we will call these
solutions as isotropiclike solutions. But, while the Dz
aloshinskii equation predicts that]xc2150 (S52) would
be an isotropic-like solution, our approach does not pred
that. In fact, our approach predicts that]xc2250 (S53)
would be an isotropiclike solution.

Of course, the majority of the solutions of these differe
tial equations are not isotropiclike solutions. We will call th
anisotropic solutionc, corresponding to the disclinationS
and anisotropya, asc

S

a(x). Hence,c
S

a(x) satisfies the same
boundary conditions of the similar isotropic disclination. F
example, for S51/2 we have c

1/2

a (0)50 and c
1/2

a (2p)

52p. In Figs. 2~a! to 2~h! graphic representations of th
numeric solutions of some functions related withc

S

a , for
fixed r, are displayed. Two distinct values of the anisotropya
and two distinct values disclination indexS are exhibited
(c

21/2

0.33 , c
21/2

0.66 , c
1/2

0.33, and c
1/2

0.66). The anisotropya50.33

corresponds toK3352K11, and the anisotropya50.66 cor-
responds toK3354K11.

Figure 2 also compares the distribution of the free ener
for fixed r, between our approach and the one by Dz
aloshinskii. The distribution of energy is strongly differe
between these two configurations; in our approach
maxima and the minima are more accentuated. Neverthe
the corresponding difference in total energy is not drama
In the Fig. 3 the configurationsc

21/2

a andc
1/2

a show this dif-
ference, as function of the anisotropya. The free energy,
according our configurations, is always around 5% grea
than the configuration previously known.

IV. FINAL REMARKS AND CONCLUSION

In this paper we have shown that the shape of the ra
disclinations depends on the manner by which we deal w
the radial symmetry of these structures. The condition] rc
50 is a constraint~a nonholonomic one!, and as a constrain
it must be handled. So, when it is imposed directly on
free energy a strong limitation in the nature of the admissi
configurations is being done and, surely, the character of
problem under consideration is also being changed. A c
straint can never be imposed directly on the functional. A
rule @11#, it must be imposed on the configuration giving th
extreme of a functional.

Finally, it must be observed that an absolutely perf
radial configuration would require a so restrictive set of e
perimental conditions, that in practice, the radial symme
would be only an approximation. Therefore, as happens
any approximation, it must be maintained until the last eq
tions, where its influence may be computed.
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1983!; M. Kléman, Rep. Prog. Phys.52, 555 ~1989!.

@5# P.E. Cladis and M. Kle´man, J. Phys.~Paris! 33, 591 ~1972!.
@6# R.B. Meyer, Philos. Mag.27, 405 ~1973!.
@7# L.E. Dzyaloshinskii, Sov. Phys. JETP31, 773 ~1970!.
@8# G.S. Ranganath, Mol. Cryst. Liq. Cryst.97, 77 ~1983!; 92, 201

~1983!; 87, 187 ~1982!.
@9# S.D. Hudson and E.L. Thomas, Phys. Rev. Lett.62, 1993

~1989!.
@10# M.W. Deem, Phys. Rev. E54, 6441~1996!.
@11# E.J. Saletan and A.H. Cromer, Am. J. Phys.38, 892 ~1976!.


